
Operating Systems 2016/17
Solutions for Assignment 8

Prof. Dr. Frank Bellosa
Dipl.-Inform. Marc Rittinghaus

T-Question 8.1: Kernel Synchronization

a. On a multi-processor system, when must local interrupts be disabled for kernel
spinlocks? 1 T-pt

Solution:
Local interrupts must be disabled if the code executed due to interrupts (e.g., the
interrupt handler) accesses the same shared data.

b. Why is disabling interrupts a privileged instruction? 1 T-pt

Solution:
Preemptive scheduling is realized by using the timer interrupt to involuntarily enter
the kernel while a user-space process is executing. If a process in user-space could
disable interrupts, it could gain infinite CPU time, thereby taking over the system.

Furthermore, interrupts are the common way to signal the completion of I/O ope-
rations. Without interrupts the OS misses these completions and potentially waits
indefinitely for devices to respond. If interrupts are disabled for too long, input may
also be lost (e.g., network packets).

T-Question 8.2: Deadlocks

a. Enumerate and explain the 4 necessary conditions for a deadlock. 2 T-pt

Solution:

Mutual exclusion (aka exclusiveness) Resources cannot be shared between pro-
cesses.

Hold and wait A process already holding a resource can wait to acquire more re-
sources.

No preemption Resources cannot be taken away forcibly from processes.

Circular wait There exists a set of processes {P0, . . . Pn} where P0 is waiting for a
resource held by P1, P1 is waiting for a resource held by P2, . . . , Pn is waiting for
a resource held by P0.

Note that these four conditions are not truly independent, as circular wait implies
hold and wait.

b. How can periodic process snapshots be used to recover from deadlocks? What is a
major disadvantage of this method? 2 T-pt

Solution:
Whenever a deadlock has been detected, a recovery mechanism can select one of
the processes involved in the deadlock and abort it. This way the deadlock can be
solved. The process is later restarted from the last snapshot.

1



This mechanism is very expensive, because periodic snapshot creation is necessary.
To take a snapshot the process must be paused for a short period of time and its
complete state must be saved (entire virtual address space, PCB, TCBs, etc.). A major
problem here is the interaction of the process with other processes and the system.
The process could for example be a database application, which regularly works
with database files on disk. Restoring only the process state and not the state of
the database files on disk, probably leads to corruption. A snapshot-based recovery
mechanism thus will most certainly require support from the application, not only
complicating the operating system but also making the life of application developers
harder.

T-Question 8.3: Resource Allocation Graph

R1

P1

 

R2
 

P2
 

R3
 

P3 

 

P4

R4 

 

 

a. Describe the situation depicted in the resource allocation graph. 2 T-pt

Solution:
We have 4 resources {R1, R2, R3(2), R4} and 4 processes {P1, P2, P3, P4}. R3 provi-
des two instances, all other resources one. We define the following triple:

< processP, {resourcesPowns}, {resourcesPwants} >.

We can then describe the situation with:
< P1, {R1}, {R2} >
< P2, {R2, R31}, {} >
< P3, {R4}, {R1, R3} >
< P4, {R32}, {R4} >

b. Has a deadlock occurred in the above situation? Why, or why not? 1 T-pt

Solution:
No deadlock occurred, although there is a cycle in the graph (P3 → R3 → P4 → R4 →
P3). P2 has all resources to finish execution. It will thus eventually release R2 and
R31. P1 can then acquire R2, run to completion and release R1 and R2. Then P3 can
get R1 and R3, and finally releases R4. P4 can now run.

c. What changes if P1 also requests R3? 1 T-pt

Solution:
It depends on the scheduling order between P3 and P1. If R31 is released by P2 and
assigned to P1, all processes can run to completion. Nothing changes. However, if the
scheduling will prefer P3 and grant it the access to R31, we end in a deadlock with
a cycle R1 → P1 → R31 → P3 → R1. Total:

10T-pt2


